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Abstract: Background: The emergence and diffusion of strains of pathogenic bacteria resistant to
antibiotics constitutes a real public health challenge. Antibiotic resistance genes (ARGs) can be
carried by both pathogenic and non-pathogenic bacteria, including commensal bacteria from the
human microbiota, which require special monitoring in the fight against antimicrobial resistance.
Methods: We analyzed the proteomes of 335 new bacterial species from human microbiota to estimate
its whole range of ARGs using the BLAST program against ARGs reference databases. Results:
We found 278 bacteria that harbor a total of 883 potential ARGs with the following distribution:
264 macrolides-lincosamides-streptogramin, 195 aminoglycosides, 156 tetracyclines, 58 β-lactamases,
58 fosfomycin, 51 glycopeptides, 36 nitroimidazoles, 33 phenicols and 32 rifamycin. Furthermore,
evolutionary analyses revealed the potential horizontal transfer with pathogenic bacteria involving
mobile genetic elements such as transposase and plasmid. We identified many ARGs that may
represent new variants in fosfomycin and β-lactams resistance. Conclusion: These findings show
that new bacterial species from human microbiota should be considered as an important reservoir of
ARGs that can be transferred to pathogenic bacteria. In vitro analyses of their phenotypic potential
are required to improve our understanding of the functional role of this bacterial community in the
development of antibiotic resistance.

Keywords: new bacterial species; human microbiota; antibiotic resistance; horizontal transfer;
mobile elements

1. Introduction

The discovery of antibiotics is one of the major medical breakthroughs of the 20th
century, which significantly reduced morbidity and mortality due to bacterial infections [1].
However, the overall effectiveness of antibiotics is often compromised by the development
of tolerance or resistance to these products [2]. The evolution of antibiotic resistance is
complex, it frequently involves the occurrence and proliferation of gene mutations that
confer resistance to one or many antibiotics [3]. The high frequency of an antibiotic-resistant
mutants is maintained in the population when exposed to the antibiotic as a function of
selective pressure [4]. Thus, the abuse and misuse of antibiotics have contributed to the
more or less rapid appearance of antibiotic- resistant strains among medically important
bacterial pathogens. Global action plans have been developed worldwide by the World
Health Organization (WHO) to slow the emergence of antimicrobial resistance and reduce
its spread. They aim to increase awareness of antimicrobial resistance and to encourage
best use of antibiotherapy [5].
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Yet, resistance to antimicrobials is a very old natural phenomenon that predates the
use of antibiotics. Metagenomic studies of permafrost dating back 30,000 years have found
antibiotic resistance genes (ARGs) against β-lactams, tetracycline and vancomycin [6]. ARG
reservoirs have been found in all complex ecosystems [2]; they are as distributed as bacteria
can be. The origin of ARGs and their diversity is due, among other things, to the interactions
that can exist in a bacterial community [7]. Bacteria evolving in the same ecosystems interact
with each other by chemical compounds, or by using specific secretion systems to ensure
sustainability [8]. Thus, bacteria from human microbiota have been reported to synthesize
antimicrobial substances [9]. In addition, Staphylococcus lugdunensis, isolated from the
human nasal cavity, produces a compound called lugdunin, which demonstrates an activity
against multidrug-resistant bacteria [10]. Indeed, many commonly used antibiotics are
naturally synthesized compounds by microbes [11]. These natural antibiotics play an
important role in the struggle for resources and the survival of the competing organisms [7].
Bacteria synthesizing antibiotics protect themselves against their own product by having
ARGs, such as Streptomyces cattleya [12] and Pseudomonas syringae [13]. The prevalence of
ARGs in microbial populations is but an adaptive response to challenges from compounds
with antimicrobial activity, including the natural antibiotics [14].

Indeed, ARGs have evolved, diversified and spread long before the “antibiotic era”.
Horizontal gene transfer (HGT) acts as a major driving force leading to the exchange
of ARGs among diverse bacterial species, thus considerably fostering collaboration in
bacterial population for the development of antibiotic resistance [15,16]. These transfers
can be performed directly with free DNA (transformation) or through the involvement of
vehicles such as plasmids (conjugation) or phages (transduction) [16]. In addition, genetic
elements called “selfish genes” will allow, by mutualism, the adaptability of bacteria to toxic
environments and favor their evolution in the ecosystem by acquisition of transposable
elements such as transposons and plasmids containing ARGs [17]. ARG cassettes can be
captured by integrons and introduced into bacterial genomes to confer antibiotic resistance
to the host [18].

The HGT of ARGs is pervasive among bacteria, especially in the human-associated
microbiota [19]. The great number of genomes, as much as 1014 bacterial cells, on one hand,
and the close contact within the human body, particularly in the biofilm formation, on
the other hand, greatly potentiate HGT [20,21]. Thus, the human microbiota is a breeding
ground for bacterial warfare that harbors more than ten thousand biosynthetic gene clusters
and genes encoding for ribosomally synthetized compounds with potential antimicrobial
activity [22]. These findings from the application of omics technologies present the human
microbiome as a new resource for finding new antibiotics. The downside is that the
exposure to antibiotics promotes the development of resistance and enhances the transfer
of ARGs. It has been shown that the diverse human microbiota, particularly the gut
microbiota, represent an important reservoir for ARGs [23,24]. ARGs seem to be a feature
of the human microbiome even without exposure to commercial antibiotics [25,26]. This
shows the dynamism in the exchange of genetic material between species and raises the
question of the still unknown wide range of resistance genes in the unknown species
from human microbiota. A better estimation of the ARGs’ reservoir in the resident rather
commensal bacteria would bring the issue of the ability of these ARGs to be transferred to
bacteria of clinical interest.

Our study focused on the genome analysis of new bacterial species described for the
first time in the human microbiota in the Institut Hospitalo-Universitaire Méditerranée
Infection. These bacteria were isolated by culturomics, a novel approach that combines
multiple culture conditions with rapid identification using MALDI- TOF mass spectrometry
and 16S rRNA sequencing [27]. Culturomics enabled the isolation of bacterial species that
have never been previously found in humans, thus expanding the repertoire of bacterial
species in the human, and especially the gut, microbiota [28]. In addition, the next genera-
tion sequencing offered an unprecedented opportunity to explore the potential reservoir of
ARGs in humans, investigate genetic variations and evaluate the HGT in bacteria from the
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human microbiota. In this study, we analyzed the genomes of 335 new bacterial species
isolated from humans, mostly from feces samples, to look for the presence of ARGs using
different computational approaches. The identified potential ARGs were subjected to
further phylogenetic analysis, as well as an investigation of putative mobilizable elements.

2. Results
2.1. Prevalence and Description of ARGs Found in the New Bacterial Species from the
Human Microbiota

When using the reciprocal BLAST program, we found a total of 883 ARGs encoding
for enzymes that may be involved in the development of antimicrobial resistance to the
nine studied antibiotic classes (Figure 1). Details of all ARGs by classes found per bacteria
is provided in (Supplementary Table S1). From the 335 studied bacteria, 278 have at
least one ARG and 57 bacteria did not harbor ARGs (29 Firmicutes, 15 Actinobacteria,
7 Bacteroidetes/Chlorobi group, 3 Proteobacteria and 2 Fusobacteria) (Supplementary
Table S1). The Firmicutes contained 654 ARGs that were found in 173 of the 203 analyzed
genomes; they encode for ARGs that belong to the nine antibiotic classes. The most
frequent ARGs were for Macrolides Lincosamides Streptogramins (MLS) (n = 212;32%),
aminoglycosides (n = 161;25%) and tetracyclines (n = 100;15%) resistance genes (Figure 1).
Paenibacillus cagae and Paenibacillus ihumii in the Firmicutes encoded the largest number of
ARGs (n = 13). The most represented genes for Actinobacteria were vancomycin resistance
genes in the family of glycopeptides (n = 31;31%), tetracyclines (n = 25;25%) and MLS
(n = 21;21%); they were found in 58/73 studied genomes. Only six of the nine families
of antibiotics were present, with a total of 99 resistance genes. For Bacteroidetes, 36 of
43 bacteria harbored at least one ARG, and we found 94 ARGs belonging to seven families
of antibiotics, with the most common classes found for MLS (n = 30;32%), tetracyclines
(n = 28;30%) and β-lactams (n = 24;26%). Finally, 11 of 14 bacteria from the Proteobacteria
family harbored 36 ARGs from seven different families of antibiotics; the most common
resistance genes were for β-lactam antibiotics (n = 16;44%), aminoglycosides (n = 11;31%)
and tetracyclines (n = 3;8%) (Figure 1).
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Figure 1. Graphical representation of the resistance gene distribution in the different phyla. The
ARGs confer resistance to nine antibiotic families: macrolides-lincosamides-streptogramin (MLS)
(264 ARGs), aminoglycosides (195), tetracyclines (156), β-lactams (58), fosfomycin (58), glycopeptides
(51), nitroimidazoles (36), phenicols (33) and rifamycin (32 ARGs).

The most frequent ARGs were those against MLS (a total of 264 ARGs, 30%), amino-
glycosides (n = 195;22%), tetracyclines (n = 156;17.5%), fosfomycin (58;7%) and β-lactams
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(58;7%) (Figure 1 and Supplementary Table S1). These gene families represented 83% of the
total of ARGs detected (Figure 1). Antibiotic-modifying enzymes accounted for the highest
number of ARGs (61%). They included esterases, transferases, lyases and phosphorylases
for MLS. N-acetyl, O-nucleotidyl and O-phosphotransferases were found for aminoglyco-
sides, oxidoreductases for tetracyclines and β-lactamases for β-lactams. Other mechanisms
involving enzymes for target protection such as rRNA methylases were also found and can
be responsible for resistance to aminoglycosides and MLS (Table 1). The most represented
enzymes of these families were by far the inactivating enzyme Tet (22%), followed by the
transferases Llm (13%), Aac (12%) and Vat (9%) and the methylases Erm (9%).

Table 1. Distribution and diversity of resistance genes found by BlastP listed by antibiotic families.

ATB Genes Detected by BlastP Diversity Total

Aminoglycosides

aac(2′)-IIb,aac(3),aac(3)-If,aac(3)-Ih,aac(3)-IIe,aac(3)-IIIa,aac(3)-IIIb,aac(3)-VIII,aac(3)-
Xa,aac(3)-XI,aac(6′),aac(6′)-34,aac(6′)-35,aac(6′)-Iad,aac(6′)-

Iz,aacC7,aacC9,AAD(3′’),aad9,aadA1,aadA13,
aadA31,aadD1,aadE,aadK,aadS,ant(3′’)-IIa,ant(3′’)-IIb,ant(3′’)-IIc,ant(4′)-Ic,ant(6),ant(6)-

Ia,ant(6)-Ib,ant(6)-Ic,ant(9),aph,aph(2′’)-IIa,aph(3′)-Ia,aph(3′)-IIa,aph(3′)-IIc,aph(3′)-
IIIa,aph(3′)-IVa,aph(3′)-Va,APH(6),aph(6)-Ia,aph(6)-Id,aph(9)-Ia,aac(2′).

53 195

Betalactams
bla,bla1,blaBCL-1,blaBKC,blaBKC-1,blaCAR-1,blaCBP,blaCIA-1,blaCIA-4,blaCKO-
1,blaCMY-100,blaIND-4,blaIND-7,blaLRA-10_like,blaLUT-5,blaMYO-1,blaOXA-

209,blaP,blaPOM,blaSPR-1,blaSPU-1,blaZOG-1,CblA,cepA,cepA-49,cfiA,cfxA,cfxA3,TEM.
29 58

Fosfomycin fos,fos_related,fosA,fosA2,fosA-491618165,fosA7,fosA8,fosB,fosB2,fosB-
38141535,fosBx1,fosX. 12 58

Glycopeptides vanB,vanC1,vanD. 3 51

MLS

chrB_rRNA_meth,ereD,erm(31),
erm(32),erm(35),erm(46),erm(49),erm(A),

erm(B),erm(D),erm(F),erm(G),erm(X),erm(Y),
ermk,llmA,lnu(A),lnu(AN2),lnu(C),lnu(D),
lnu(G),lnuE,mph(B),mphI,mphK/ycbJ,mphL,

mphM,mphO,myrA,rlmA,vgb(B),vgbC,cfr,cfr(B),cfr-Cb,clbC,vat,vat(B),vat(F),vat(H),vatI.

41 270

Nitroimidazole nimA,nimB,nimD,nimE,nimJ. 5 36

Phenicol cat,cat86,catA1,catA13,catA15,catA16,catA4,
CatB,catB3,catP,catV,cpt. 12 33

Rifamycin arr-269927220,arr-Ms,rphB,rphC,rphD. 5 32

Tetracyclines otr(A),tet(32),tet(36),tet(M),tet(O),tet(Q),tet(T),
tet(W),tet(X),tetB(P). 10 156

Total 170 889

2.2. New Putative ARGs Conferring Resistance to β-Lactams, Fosfomycin and Vancomycin

The protein sequences of ARGs potentially conferring β-lactam resistance were aligned
with the already known β-lactamase domains in the Conserved Domain Database (CDD) [29].
We searched for motifs, i.e., sequence patterns that occur repeatedly, in these proteins by
MAST scanning within the MEME suite [30]. This structural and functional analysis showed
that 44 sequences conserved at least two amino-acid motifs, allowing its classification as
the serine β-lactamase, including 41 in class A, two in class C and one in class D (Table 2).
We identified fourteen ARGs encoding for potential amino acid bonds to zinc molecules
that can be considered as metallo-β-lactamase, including six in the subclass B1, seven in
the subclass B3 and one with the HARLDQ motif (Figure 2, Table 2). The phylogenetic tree
based on the analysis of β-lactams-resistance proteins showed that fifteen proteins from
twelve species represented a single line descent together with already known ARGs for
β-lactams, including the Cfx, CepA, CGA, CIA, Bla and BCL in class A, to IND in class
B, to Amp in class C and OXA in class D. The twelve species correspond to Ihuprevotella
sp., Prevotella sp., Bacteroides bouchedurhonense, Bacteroides congonensis, Chryseobacterium
phoceense, Virgibacillus dakarensis, Numidum massiliensis, Chryseobacterium sp., Enterobacter
timonensis and Vaginibacter massiliensis. The pairwise comparison of sequence identity of
all sequences generally confirmed the phylogenetic grouping, as revealed in Figure 2 and
Table S2.
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Table 2. ARGs with probable β-lactamase activity and the analysis of the conserved motifs to
determine their nature, either serine (class A, C and D) or metallo (class B).

Class Conserved Motifs Bacterial Species (ARGs ID)

A STFK SDN EIDLN KTG Rubeoparvulum massiliensis (00929)

STFK SDN EPDLN KSG Gracilibacillus timonensis (03249),
Oceanibacillus timonensis (04067)

STFK SDN EPDLN KTG Rasbobactérium massiliensis (04418)

STFK SDN ETDLN KSG Oceanobacillus jeddahense (01891)

STFK SDN ETDLN KTG Microvirga massiliensis (00933)

STFK SDN ETELN KTG Pseudomonas massiliensis (01017)

STFK SDN EVELN KSG Lentibacillus timonensis (03906)

STFK SDS X KTG Rabobacterium massiliensis (04420)

STHK SDN EPALN KTG Virgibacillus massiliensis (00984)

STHK SDN EPELN KSG Virgibacillus dakarensis (02401)

STHK SDN EPELN KTG Numidum massiliensis (03399),
Oceanobacillus senegalensis (04097)

STHK SDN KSG Erwinia mediterraneensis (03764)

STVK SDS X KTG Rasbobacterium massiliensis (04419)

STYK SDN EPDLN KSG Bacillus timonensis (04031)

STYK SDN EPDLN KSG Massilibacterium senegalense (00382),
Oceanbacillus massiliensis (03406)

STYK SDN EPELN KSG Halobacillus timonensis (03684)

STYK SDN EPELN KSG Paenibacillus cagae (04128)

STYK SDN EPNLN KSG Halophilibacterium massiliense (02839)

STYK SDN ETELN KSG Bacillus dielmoensis (03825), Clostridium
bouchedurhonensis (02592)

STYK X ETELN KSG Sediminibacillus massiliensis (01458)

SVFK SDN X KTG

Alistipes phocaeensis (00138), Bacteroides
bouchedurhonensis (03407), Bacteroides

congolense (04371), Butyricimonas
phoceensis (00521), Butyricimonas

timonensis (03123), Chryseobacterium
phoceense (03389), Ihuprevotella massiliensis
(00839), Ihuprevotella massiliensis (00843),

Ihuprevotella massiliensis (00835),
Parabacteroides timonensis (02340),

Prevotella ihumii (00671), Prevotella lascolaii
(02148), Prevotella merdae (01254),
Sanguibacter massiliensis (00542),
Tidjanibacter massiliensis (00485)

SVFK SDN X X Chryseobacterium timonensis (03158),
Chryseobacterium timonense (03490)

B HARLDQ Vitreoscilla massiliensis (02721)

B1 HXHXD

Bacteroides ihumii (00646),
Chryseobacterium phoceensis (03194),
Chryseobacterium phoceensis (03700),
Chryseobacterium timonensis (03072),
Chryseobacterium timonensis (04617),

Vaginibacter massiliensis (02382)
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Table 2. Cont.

Class Conserved Motifs Bacterial Species (ARGs ID)

B3 HAHADH Xanthomonas massiliensis (02091)

HGHFDH Dakarella massiliensis (01185)

HXHXDH

Enterobacter timonensis (02573), Erwinia
mediterraneensi (02797), Microvirga

massiliensis (01665), Ottowia massiliensis
(01396), Rasbobacterium massiliensis

(04793)

C SVSK YAN KTG Enterobacter timonensis (01478)

SVSK YSN KTG Rasbobacterium massiliensis (06881)

D STFK SCV X KTG Vaginibacter massiliensis (02368)
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Figure 2. Phylogenetic tree based on β-lactamase sequences. Sequences were aligned based on their
amino acid sequences and phylogeny was inferred using the maximum likelihood method. The
percentage of trees in which the associated taxa clustered together (100 bootstrap replicates) is shown
next to the branches. New ARGs found in the studied species are colored in red, stars indicate a new
variant or new ARG-based one and the bars indicate a new family of ARG.
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The fifteen protein sequences yielded high similarity values of at least 70% with their
closest phylogenetic relatives. In the phylogenetic tree, seven other species grouped weakly
with already known ARGs for β-lactams, but their sequence identity was less than 70
(Table S2), while 36 proteins from 30 species occupied a well-separated position. Among
these, nineteen species (21 ARGs) were distributed into six distinct clusters (containing at
least two proteins). They yielded sequence similarity was well under 70% and therefore
could not be assigned to known ARGs for β-lactams. On the basis of sequence analysis
and phylogeny, these proteins can be considered as new putative β-lactamase variants,
including twenty-nine in class A, thirteen in class B and Rasbobacterium massiliensis 06,881
in class C. The well-separated clusters of proteins can be attributed to new putative β-
lactamase families, of which four are in class A and two in class B.

The alignment of ARG sequences potentially conferring resistance to Fosfomycin with
protein domains within CDD showed that the 58 putative Fos proteins rather belonged to
the large family of metallothiol transferases in the superfamily of vicinal oxygen chelate
(VOC). Similar to other metalloenzymes in this family (FosA, FosB and FosX), these Fos pro-
teins render fosfomycin inactive by opening the oxirane [31]. These genes are distributed in
two phyla: 56 in Firmicutes and two in Proteobacteria. In Firmicutes, Paenibacillus antibioti-
cophila contains three fos genes alone, ten bacterial species have two and the remaining have
only one (Figure 3). The phylogenetic tree based on the analysis of fosfomycin proteins
showed that five proteins represent a well-separated branch. The pairwise comparison of
sequence alignment showed that these sequences have less than 64% identity with their
closest phylogenetic relatives already known to confer fosfomycin resistance (Table S3).
While the most divergent known metallo-transferases leading to resistance to fosfomycin
has a 66% similarity with already known FosB, these five proteins may be representative
of new distinct variants of fosfomycin resistance (Figure 3). They included two genes
from Bacillus halophilisenegalensis (03374) and Paenibacillus dakarense (02204) that seem to be
new variants of the fosB family; Numidum massiliensis, Bacillus Jeddahtimonensis and Bacillus
testis seem to be a novel class of ARGs closely related to the fosB/D/M family. Xanthomonas
massiliensis (03138) and Risungbinella massiliensis (00114) formed a phylogenetic branch
that was distinct from all known fosfomycin resistance proteins, and their similarities with
all analyzed sequences were slightly below the putative class delineation threshold of
59% defined herein. Therefore, these proteins seem to represent novel ARGs conferring
resistance to fosfomycin.

Finally, vanB and vanD glycopeptide resistance genes were found in only five studied
bacteria. When considering the ordering of the functionally significant elements from the
vancomycin resistant operon in the region of interest which contains the identified vanB
and vanD genes, we could find that three of these five bacteria have at least four other
genes related to the vancomycin resistance gene operon (Figure 4). Indeed, Durandella
massiliensis, Varibaculum timonensis and Bariatricus massiliensis were found to harbor in
the neighborhood around vanB or vanD, genes that are homologous (100% identity and
coverage) to genes that are usually associated with the operon of the vancomycin resistance
gene. The genomic syntheny of the regions containing van resistance genes with vanB and
vanD gene clusters from vancomycin-resistant enterococci (VRE) (Figure 4) suggest that the
three clusters identified herein can mediate resistance to glycopeptides. Similar to other
vanB clusters, they may induce the production of peptidoglycan precursors terminating
in d-alanyl-d-lactate (d-Ala-d-Lac) instead of d-alanyl-d-alanine (d-Ala-d-Ala), which
drastically decreases the affinity for vancomycin. It is noteworthy that vanB-type genes
have a moderate level of resistance to vancomycin compared with vanA genes.
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Figure 4. Schematic representation of the clusters of glycopeptide resistance genes found in three
bacteria from the human gut in comparison with vanB and vanD gene clusters in Enteroccoccus sp.

2.3. Origin of ARGs in the Human Microbiota

To investigate the human microbiota as a melting-pot for the horizontal transfer of
ARGs, we performed an evolutionary analysis based on ARGs phylogenies, as well as
analysis of the genetic environment context and GC content of genes versus genomes
(Figure S1). The phylogenies showing the evolutionary history of the ARGs revealed
the putative involvement of 111 ARGs in gene exchange between species from human
microbiota and human commensal or pathogenic bacteria based on biosafety level ≥ 2
(https://bacdive.dsmz.de accessed on 15 April 2021) (Supplementary Figures S2–S19).
Indeed, these trees constructed on the basis of gene sequences showed bacteria from human
microbiota with potential ARGs identified herein in a robust cluster (bootstrap higher
than 70) with species from a distinct phylum. Among these ARGs, 49 were to MLS, 28 to
tetracyclines, 20 to aminoglycosides, five to phenicol, five to β-lactams, two to rifamycin,
one to nitroimidazole and one to fosfomycin (Figure 5). Phylogenies showed sixteen of
these robust chimeric nodes involving Staphylococcus aureus and its three plasmids and
29 nodes with Enterococcus sp. and its three plasmids. Escherichia coli and its plasmid
and Pseudomonas aeruginosa and its plasmid were observed in four chimeric nodes each.
Finally, phylogenies showed robust grouping between bacteria from human microbiota
and plasmids from Klebsiella sp. (3 nodes) and one plasmid from Acinetobacter baumannii
(one node) (Figure 5). Bacteria from human microbiota found in these chimeric nodes
belonged to the Firmicutes, Bacteroides/Chlorobi, Actinobacteria and to Proteobacteria
in 77, 20, 8 and 6, respectively, of the 111 ARGs. Megamonas massiliensis harbored the
greatest number, as many as four potentially transferred resistance genes, followed by Anae-
rococcus mediannikovii, Paenibacillus cagae, Peptoniphilus colimassiliensis, Polynesia massiliensis
and Vaginibacter massiliensis with three genes. The GC content of these genes differed
significantly from the genomic average and reached values greater than 10 in 47 genes.
Interestingly, these potentially transferred ARGs were located next to each other in the
genome, which could form a probable resistance island that can be transferred “en bloc” to
other organisms (Table 3).

https://bacdive.dsmz.de
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Figure 5. The melting-pot inside the human microbiota. Network showing possible horizontal
transfers between the new species analyzed herein and commensal and pathogenic species from
Bacteroidetes (β), Firmicutes (φ), Proteobacteria (π) and Actinobacteria (α). The edges were colored
according to the antibiotic families.
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Table 3. ARGs found in the genomes of human microbiota that can be issued from lateral transfer
according to the closely related species found in robust phylogenies, the difference between their GC
content and the mean GC% of the genomes (Dif) and the presence of transposases nearby. Species in
red indicate the possible en bloc transfer. * indicates prophage integrase and plasmid recombination
enzyme five proteins upstream or downstream of the specific protein.

Genome Gene ARGs Closely Related Species [Dif] Transposase

Anaerococcus
jeddahense 01594 tet(M)

Staphylococcus aureus

5 01589

Massiliomicrobiota
timonensis 00843 tet(M) 0 0838

Peptoniphilus
colimassiliensis 00489 tet(M) 14 00484

Khoudiadiopia
massiliensis 00250 tet(M) 5 00245

Ndiopella
massiliensis 00481 tet(M) 11 00476

Urinicoccus
massiliensis 01024 tet(M) 0 01019

Polynesia
massiliensis 06038 tet(M) 11 06033

Anaerococcus
mediterraneense 01722 tet(M) 1 01727

Anaerococcus
mediannikovii 00814 ant Streptococcus mitis 5 00817_00819

Anaerococcus
mediannikovii 00808 erm Streptococus pyogenes 3 00817_00819

Anaerococcus
mediannikovii 00812 aph

Plasmid in Enterococcus faecalis, plasmid
in K. oxytoca

11 00817_00819

Intestinibacillus
timonensis 00006 aph 8

Peptoniphilus
colimassiliensis 00331 aph 5 00324_00326

Peptoniphilus
colimassiliensis 00335 erm

S. aureus, S. pyogenes,S. parasanguis

20 00324_00326

Peptoniphilus
raoultii 01230 erm 5 01231_01233

Urinacoccus
massiliensis 01047 erm 6 01037

Clostridium
bouchedurhonense 00004 erm

Enterococcus faecium/Staphylococcus
epidermidis, plasmid in S. pyogenes,

plasmid in streptococcus sanguis, plasmid
in Lactobacillus reuteri, Clostridioides

difficile

13

Emergencia
timonensis 01552 erm 16 01558

Negativibacillus
massiliensis 02069 erm 16 02058

Intestinibacillus
timonensis 01053 erm 20

Sanamassiliae
timonensis 00487 erm 16 00477

Neobittarella
massiliensis 00011 erm 24
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Table 3. Cont.

Genome Gene ARGs Closely Related Species [Dif] Transposase

Psychrobacter
timonensis 02207 aac Escherichia coli 5 02201

Desnuesiella
massiliensis 01710 ant S. aureus 5 01706

Malibacterium
massiliense 00202 tet

Lawsonia intracellularis

10

Phocibacillus
massiliensis 01825 * tet 5

Clostridium
phoceensis 03063 * tet 11

Megasphaera
vaginalis 01258 tet Clostridiodes difficile 14

Emergencia
timonensis 03403 tet Vibrio sp., E. faecalis Clostridium septicum 12 03398

Bariatricus
massiliensis 00013 * aad Plasmid in Campylobacter jejuni 9

Neglecta timonensis 01846 erm Lysinibacillus sphaericus,Bacteroides
thetaiotaomicron,Bacterioides ovatus 26 01848_01850

Megamonas
massiliensis 00045 lnu

Streptococcus agalactiae

2

Megamonas
massiliensis 00845 lnu 2

Megamonas
massiliensis 01002 lnu 2

Megamonas
massiliensis 01006 lnu 2

The search for mobile genetic elements revealed the presence of 61 transposases and
20 possible integrated plasmids in the studied bacteria coding for ARGs (Table 3). The
phylogenetic trees showed robust groupings between a human microbiota species and a
pathogenic bacterium from the same or different phyla (Supplementary Figures S2–S19).
Transposases were found in the genomes of thirteen species that formed a robust phylo-
genetic group with pathogenic bacteria in the ARG protein-based trees (Table 3). These
mobile genetic elements were located in the region coding for the ARGs (not more than ten
genes up and down the gene) which suggests possible gene acquisition by transposition.
Thus, a gene cluster surrounded by an integrase and a transposase containing a tet(M)
gene (Figure 6) found on Staphylococcus aureus ST398 (Accession number: AM990992.1)
chromosome was found in eight Gram+ bacteria analyzed, five of which were isolated from
the gut, two from the vagina and one from urine (Anaerococcus jeddahensis, Anaerococcus
mediterraneensis, Ndiopella massiliensis, Massiliomicrobiota massiliensis, Polynesia massiliensis,
Peptoniphilus colimassiliensis, Khoudiadiopa massiliensis and Urinacoccus massiliensis) (Figure 6
and Figure S8, Table 3). A plasmid search in these bacteria showed that seven bacteria had
a repUS43 plasmid on the same contig as the tet(M) gene. The S. aureus genome showed
an origin of replication CAQ49392.1 described as transcriptional regulator, Cro/CI family
with a replication initiation domain (Figure 6).
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Figure 6. Comparison of the cluster gene surrounded by an integrase and transposase containing
tetM ARG found in Staphylococcus aureus ST398 (Accession number: AM990992.1) isolate in a case of
human endocarditis and seven new bacterial species described in this work. The figure illustrates
potential gene transfer between bacteria isolated from human microbiota. The color gradient from
blue to red indicates the percentage of sequence similarity which was calculated via tblastx with the
Easyfig tool [33] between the genes in the genetic environments studied.

Another example includes Bacteroides cutis, Butyricimonas phoceensis and Prevotella
lascolaii that harbored two genes, ermF and tetX, next to each other that were found to
be similar to genes on a plasmid from Bacteroides fragilis strain FDAARGOS (Accession
number CP054002) (Figure 7). The representation in Figure 7 shows a very high similarity
of the genes in the genetic environment of these two genes with a plasmid from Bacteroides
fragilis. Bacteroides cutis does not contain a plasmid according to PlasmidFinder; however,
some elements of plasmid mobility such as the mobC gene as well as recombinases and
conjugative transposon in the Tra family were found in the environment of these genes.
These ARGs from Bacteroid cutis may be the result of lateral transfer; they may have been
conveyed by a plasmid that integrated into the genomes of this bacterium. We found
a transposase IS4351 followed by tet(X) and erm(F) in Butyricimonas phoceensis genome,
whereas Prevotella lascolaii has in 5′ an insertion sequence (IS1380) followed by an erm(F)
and tet(X). These data suggest that these ARGs can be mobilizable. Likewise, Psychrobacter
timonensis has two aminoglycoside resistance genes, aadA1 and aac(2′), next to transposases
(Figure 8). The aadA1 gene has already been characterized in an Int1 integron of Pseudomonas
aeruginosa (Genbank: AJ584652.2) isolated from a lower respiratory tract infection and the
following aac gene in an Escherichia coli MS 175-1 from the human gut. The two genes
aadA1 and aac2 are surrounded by an insertion sequence and two tyrosine recombinases in
Psychrobacter massiliensis and E. coli genomes.
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Figure 7. Comparison of the genetic environment from Bacteroides fragilis strain FDAARGOS (Acces-
sion number: CP054002) plasmid containing erm(F) and tet(X) ARGs isolated from the transverse
colon and three new species studied. The figure illustrates potential gene transfer between bacteria
isolated from human microbiota. The color gradient from blue to red indicates the percentage of
sequence similarity between the genes in the genetic environments studied.
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Figure 8. Comparison of the genetic environment of Psychrobacter timonensis, integron from Pseu-
domonas aeruginosa (Accession number: AJ584652) containing aadA1 ARG and Escherichia coli MS 175-1
with aac(2′) ARG (Accession number: ADUB00000000). The figure illustrates potential gene transfer
between bacteria isolated from human microbiota. The color gradient from blue to red indicates the
percentage of sequence similarity between the genes in the genetic environments studied.

3. Discussion

The present work is the first description of the resistome of a large collection of new
bacterial species from the human microbiota. Our results reveal the presence of 883 ARGs
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in the 335 analyzed bacterial genomes. The most prevalent ARGs were encoding for MLS,
aminoglycosides, tetracyclines, β-lactams and fosfomycin, which is in agreement with the
results reported in various studies on the human gut https://resistomap.datalaboratory.ru/
accessed on 15 May 2021, knowing that 77% of our studied bacteria were isolated from the
gut [34,35].

Many ARGs identified herein can be considered as putative new variants, new ARGs
and even new ARG families (Figures 2 and 3 and Supplementary Figures S2–S19). They
represent well-separated novel sequences within the ARGs and could be distinguished
from their nearest phylogenetic relatives through molecular analysis, in particular the lack
of sequences similarity (under 64% for β-lactamase and 70% for fosfomycin resistance). The
sequence similarity threshold that can be used to define the novelty of protein sequence is
relatively dependable. Indeed, New Delhi Metallo β-lactamase 21 (NDM21) was described
as a new variant, even though it has 99.9% nucleotide sequence similarity with NDM5 [36].
Concerning the fos genes, fosB4, fosB5 and fosB6 have been defined as subtypes of the fosB
genes with protein sequence similarities with FosB1 of 99.3%, 99.3% and 97.8%, respec-
tively [37]. In a previous work, we described a new resistance gene family fosM, consisting
of three genes fosM1, fosM2 and fosM3 detected in Bacillus massiliogabonensis, Gracilibacillus
timonensis and Bacillus phoceensis, respectively, and which have protein sequence similarities
of less than 70% with the referenced fos genes. Thus, we confirmed the functional activity
of such genes by in vitro techniques [32]. Likewise, Sommer et al., (2009) characterized an-
tibiotic resistance genes in human microflora and obtained an average of 69.5% nucleotide
coverage with GenBank sequences [38]. Altogether, these results demonstrate the great
diversity of resistance mechanisms and that the genes known so far in the bibliography
and referenced are only a tiny part of the repertoire of ARGs existing in nature [39].

We found evidence of putative transfers of ARGs between the studied bacteria and
pathogenic bacteria. Phylogenetic trees with known ARGs and the hits resulting from
ARG blasts highlighted some potential HGTs with pathogenic bacteria. The difference
between the GC content of ARGs and their host genome indicate possible lateral acquisition.
We estimated the transferability of these ARGs and their mechanism of integration into
these new bacterial species genomes through the presence of transposon and plasmids.
Thus, we provide some examples of potential exchanges of ARGs by transposition in
chromosomes or plasmids between our studied species from different body sites and
pathogenic bacteria such as S. aureus, B. fragilis, P. aeruginosa and E. coli (Figures 6–8 ). These
examples do not determine the direction of the ARG exchange; it is possible that these
bacteria can be a source of dissemination of ARGs into pathogenic bacteria. It has already
been shown in vitro that gut commensal bacteria of the genus Bacteroides and Clostridiales
can transfer ARGs to pathogenic bacteria [40–43]. The comparison of metagenomically
assembled genomes from fecal samples with samples collected 10 years apart for each of
two participants, using high-throughput chromosomal conformation capture, estimated as
much as twelve HGT per year on average [44].

This work shows that the new bacterial species isolated from human microbiota
could be progenitors of new ARGs that may disseminate in bacteria of clinical interest.
Likewise, Moraxella sp. chromosomal sequences was shown to be a probable reservoir that
provides colistin resistance mcr-like genes [45]. Genomic analysis of 64,628 Gram-negative
bacteria [46] demonstrated a wide distribution of mcr-1 homologues, with over 13,658
BLAST hits. In the same work, the rhizome of mcr-1 showed that Moraxella pluranimalium
was the putative progenitor of this gene, while the BLAST shows, with very high confidence
(criteria identity ≥ 90% and alignment ≥ 98%), that 6% of the E.coli analyzed possess mcr-1.
This therefore implies the wide distribution by HGT of this gene, unknown before 2015 [47].
Another example is the chimeric ARG New Delhi Metallo β-lactamase (NDM-1), resulting
from the fusion of the first six amino acids of the aminoglycoside ARG (aphA6) and a
metallo β-lactamase (MBL) that most likely occurred in Acinetobacter baumannii [48]. This
gene, discovered in 2008, has spread very rapidly and alarmingly in various Gram-negative
pathogenic bacteria around the world [49]. Altogether, our findings reveal the genetic

https://resistomap.datalaboratory.ru/


Int. J. Mol. Sci. 2022, 23, 2137 16 of 20

diversity of ARGs and draw attention to the potential role of human microbiota in the
current and future antimicrobial resistance threats.

It is noteworthy that our results found herein do not represent a general view of the
frequency of ARGs in all body sites, as there was a selection bias and a predominance
of bacteria from the gut. The majority of bacteria studied were Firmicutes, which may
influence the predominance of some ARG families over others. Taken together, these biases
are due to the themes of the work carried out within our IHU team, which is more focused
on the culture of bacteria from the gut. Additionally, we do not have information on
antibiotic usage, which would be interesting to understand the evolutionary history of
ARGs. Nevertheless, the main limitation of this work remains in the in silico method. We
applied a computational approach to assess the antimicrobial resistance within a complex
environment such as the human microbiota searching for ARGs on the basis of enzyme
homology. Even though the protein sequences were very close or identical to already
known active ARGs responsible for clinical antibiotic resistance, these in silico results need
in vitro confirmation. Future experimental research that characterizes the antimicrobial
profile of these ARGs in human pathogens and commensals would be very useful to
provide clinical evidence.

4. Materials and Methods
4.1. Materials

In this study, we analyzed the genome sequences of 335 new bacterial species that
have been isolated from human microbiota for the first time in the Institut Hospitalo-
Universitaire Méditerranée Infection using culturomics [28] (Supplementary Table S1).
The studied bacteria were identified in different biological specimens, specifically in
stool (76%), vaginal swabs (9%), urine (4%), skin swabs (3%) and sputum and nasal
swab (3%) samples. They were distributed as follows: 203 Firmicutes, 73 Actinobacteria,
43 Bacteroidetes, 14 Proteobacteria and 2 Fusobacteria. The genomes of these bacteria
were previously sequenced using different whole genome sequencing (WGS) strategies
and reads were assembled by the IHU bioinformatic team. Genome sequences have
been deposited in the database of the European Bioinformatics Institute (EMBL-EBI)
https://www.ebi.ac.uk/genomes/bacteria.html accessed on 15 December 2020. We re-
trieved the genome sequences and annotated them ab initio with the PROKKA1.12 pipeline [50].

4.2. Computational Method for Predicting ARGs

Genome-based ARG tracking was performed by using a BLAST-based approach
to query input amino acid sequence data from the 335 bacteria for the presence of a
pre-determined set of ARG determinants contained in AMR, CARD and ARG-ANNOT
reference databases [51–53]. The output was sorted to keep the hits corresponding to
enzymatic mechanisms of resistance, i.e., inactivating genes or target-site alteration. Hits
obtained with a minimum threshold of 50% identity and 70% coverage were considered
as significant. Protein sequences corresponding to the obtained hits from this first BlastP
were individually compared with all proteins in each bacterial genome by reciprocal BlastP.
The best BLAST for each protein was extracted using a Perl script. The best hits for each
resistance gene-bacteria and bacteria-resistance gene pairs were compared in order to
determine the number of reciprocal best hits for each pairwise comparison. The number of
reciprocal best hits was counted using an expectation value (E) of <10−4 as the stringency
threshold for determining a valid best hit.

4.3. Phylogenetic Analysis

The potential ARGs were used to construct individual protein trees. The amino acid
sequences were retrieved from the different databases, aligned using Clustal [54] and
further optimized visually. Maximum likelihood (ML) analyses were conducted in the
MEGA v7 program with default settings [55]. Clade robustness was assessed using a
bootstrap analysis with 1000 replicates [56]. We used Bioedit [57] to calculate the identity

https://www.ebi.ac.uk/genomes/bacteria.html
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matrix of the alignments of fosfomycin and β-lactamase amino acid sequences. This
allowed us to determine the rate of similarity between well-described reference sequences
in order to set the parameters for defining new ARGs or new variants. A clustering of two
or more new ARGs can be considered as putative new resistance gene families.

4.4. Bioinformatic Characterization of Conserved Protein Domains and Motifs

The conserved domain database, CDD [29] (https://www.ncbi.nlm.nih.gov/Structure/
cdd/cdd.shtml accessed on 15 March 2021), was used to find the protein domains in order to
characterize the enzyme functional class. The MEME/MAST Suite was used to identify the
patterns/motifs which are specific to a particular family or subfamily of β-lactamases [30]
(http://meme.nbcr.net accessed on 15 May 2021). The conserved patterns were derived
using the pattern-search tool with default parameters of fingerprint width of 10 residues
and minimum occurrence of two patterns per sequence. Motif scanning was performed by
the Motif Alignment and Search Tool (MAST) [30]. The determination of family specific
patterns/motifs helps to assign the newly identified β-lactamases to one or the other family
or subfamily; it can be very useful to reveal gene novelty. The genomic context of potential
vancomycin resistance genes was examined looking for specific genetic organization and
the presence of an operon. The BLAST comparisons of the genomic region containing the
potential ARGs to genomic sequences from NCBI database allowed the search for regions
with similarly annotated content.

4.5. Detection of Mobile Genetic Elements Associated with ARGs and Determination of
GC Content

Further in silico analysis of the genetic context of the predicted ARGs was performed
to search for the presence of mobile elements. Transposases were searched up to ten genes
upstream and downstream for the predicted ARGs using a locally developed program
that considered the annotation of the genome to locate the positions of potential mobile
genetic elements. The plasmids were searched within the PlasmidFinder database [58] with
a minimum threshold of 90% identity and 90% coverage. The sequence of the ARGs and its
corresponding genomes in FASTA format were used to calculate the GC%. The start and end
codons were not deleted from the sequence for all the tested genes. Comparative analysis
between the studied genomes containing ARGs and genomes of pathogenic bacteria with
homologs to these ARGs was generated and drawn using Easyfig software [33].

5. Conclusions

We conducted an exhaustive in silico analysis in order to describe the resistome
of new bacterial species from the human microbiota. We have shown that these new
bacterial species may have interacted with pathogenic bacteria and exchanged ARGs in
one way or another. We also highlighted potential new genes together with possible
new resistance mechanisms. These putative new ARGs may be transferred to transient
clinical bacteria associated with human infection. Knowledge of the human microbiota
and its ARG reservoir is important for understanding the long-term future challenges of
antibiotic resistance.
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